

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

A widely varying range of products in reactions of $C_6F_5BrF_2$, $C_6F_5IF_2$, and $C_6F_5IF_4$ with Lewis acids of different strength

Hermann-Josef Frohn^{a,*}, Frank Bailly^a, Dirk Welting^a, Vadim V. Bardin^b

^a Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany

^bN.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history: Received 24 September 2008 Received in revised form 26 November 2008 Accepted 27 November 2008 Available online 6 December 2008

Keywords:

Perfluoroorganobromine(III) difluoride Perfluoroorganoiodine(III) difluoride Perfluoroorganoiodine(V) tetrafluoride Fluoride abstraction Perfluoroorganyl(fluoro)halonium cations NMR spectroscopy

ABSTRACT

The relative fluoride donor ability: $C_6F_5BrF_2 > C_6F_5IF_2 > C_6F_5IF_4$ was outlined from reactions with Lewis acids of graduated strength in different solvents. Fluoride abstraction from $C_6F_5HaIF_2$ with $BF_3 \cdot NCCH_3$ in acetonitrile (donor solvent) led to $[C_6F_5HaIF \cdot (NCCH_3)_n][BF_4]$. The attempted generation of $[C_6F_5BrF]^+$ from $C_6F_5BrF_2$ and anhydrous HF or BF₃ in weakly coordinating SO₂CIF gave C_6F_5B besides bromoperfluorocycloalkenes C_6BrF_7 and $1-BrC_6F_9$. In reactions of $C_6F_5IF_2$ with SbF_5 in SO₂CIF the primary observed intermediate (¹⁹F NMR, below 0 °C) was the 4-iodo-1,1,2,3,5,6-hexafluorobenzenium cation, which converted into $C_6F_5IF_3$ which decomposed at 20 °C to $C_6F_5IF_4$ with SbF_5 in SO₂CIF below $-20 \circ C$ gave the cation $[C_6F_5IF_3]^+$ which decomposed at 20 °C to $C_6F_5IF_4$ with SbF_5 in SO₂CIF below of products in the fast reaction with AsF_5 in $Cl_3F(-60 \circ C)$ which resulted in $C_6F_1AIF_4$. Intermediate and final products were isolated and analytically characterized.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Bis(organyl)iodonium salts [RR'I][Y] are well known compounds which are widely used in organic synthesis [1-7]. Bis(organyl)bromonium salts [RR'Br][Y] are less investigated although some progress was achieved in the last two decades [2-4,8-11]. Only little is known about the related organyl(fluoro)halonium salts. Bubbling of BF₃ into solutions of perfluoroalkyliodine difluoride in CH₂Cl₂ at -60 °C led to a precipitate which gave in subsequent reactions with electron-rich aromatic compounds (C₆H₆, C₆H₅CH₃) perfluoroalkyl(aryl)iodonium tetrafluoroborates. The nature of the primary precipitate was not elucidated [12,13]. Organyliodine tetrafluorides R_FIF₄ (R_F represents perfluorinated alkyl, alkenyl, cycloalkenyl, and aryl groups) did not react with BF_3 in 1,1,1,3,3-pentafluorobutane (PFB) at -20 to 22 °C [14]. When the Lewis acid was perfluoroorganyldifluoroborane, R'BF₂, the iodonium salt $[R_F(R'_F)IF_{n-3}][BF_4]$ (n = 5) was formed rather than the salt $[R_F IF_{n-2}][R'_F BF_3]$ (see review [4]). Attempted reactions of CF_3IF_4 with $AsF_5[15]$ or of CF_3IOF_2 with BF₃, AsF₅, or SbF₅ [16] resulted in the decomposition of the iodine(V) compounds and formation of CF₄. Fluoride abstraction from C₆F₅IF₂ and C₆F₅IF₄ under the action of SbF₅ in SO₂ClF at low temperatures was reported to give solutions of $[C_6F_5IF]Y$ [17] and $[C_6F_5IF_3]Y$ [18], respectively. Seppelt prepared the salt $[C_6H_5IF_3][SbF_6]$ from $C_6H_5IF_4$ and SbF_5 in anhydrous HF (aHF) at -30 °C and characterized it by X-ray structural analysis, ¹H, ¹⁹F NMR, and Raman spectra [19]. In all cases, the salts $[ArIF_{n-2}][Sb_mF_{5m+1}]$ (n = 3, 5) were intrinsically unstable and decomposed above -20 to 0 °C to unknown products. To our knowledge, the preparation or detection of any organyl-(fluoro)bromonium salts was not reported so far.

Continuing our systematic research in the field of fluoroorganohalogen fluorides, we investigated the interaction of $C_6F_5BrF_2$ (1), $C_6F_5IF_2$ (2), and $C_6F_5IF_4$ (3) with Lewis acids of different strength in donating (acetonitrile), weakly coordinating (SO₂ClF, CH₂Cl₂, or 1,1,1,3,3-pentafluoropropane (PFP)) and acidic (anhydrous HF) solvents.

2. Results

2.1. Reactions of $C_6F_5HalF_2$ (Hal = Br, I) with BF₃·NCCH₃ in the presence of the strongly coordinating solvent acetonitrile

The addition of BF₃·NCCH₃ in CD₃CN to a cold (-78 °C) solution of C₆F₅BrF₂ (**1**) in CD₂Cl₂ led to the complete consumption of **1** and formation of the new species (**1a**) (Eq. (1)) which displayed ¹⁹F resonances at -86.5 (s, $\tau_{1/2} = 30$ Hz, 1F, BrF), -128.5 (m, 2F, F^{2.6}), -135.4 (ttd, ³*J*(F⁴,F^{3.5}) = 22 Hz, ⁴*J*(F⁴,F^{2.6}) = 9 Hz, ⁶*J*(F⁴,BrF) = 9 Hz, 1F, F⁴), -154.7 (m, 2F, F^{3.5}), and -151.4 ([BF₄]⁻) ppm (-78 °C). In a similar way, the reaction of C₆F₅IF₂ (**2**) with BF₃·NCCH₃ in

^{*} Corresponding author. Tel.: +49 2 03 379 3310; fax: +49 2 03 379 2231. *E-mail address*: h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ -} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2008.11.004

Table 1 ^{19}F NMR spectral data of C_6F_5HalF_2 and [(C_6F_5)_2Hal][BF_4] (CD_3CN, 24 $^\circ C)^a.$

Compound	δ (F), ppm				
	F ^{2,6}	F ⁴	F ^{3,5}	Hal-F ^b	
C ₆ F ₅ BrF ₂ ^c	-133.2	-144.0	-156.8	-44.5	[20]
C ₆ F ₅ BrF ₂	-134.0	-143.6	-156.7	-49.0	[20]
$[(C_6F_5)_2Br][BF_4]$	-129.3	-139.6	-155.2		[10]
$C_6F_5IF_2^d$	-122.1	-143.6	-156.9	-158.6	[21]
$C_6F_5IF_2$	-122.9	-144.5	-157.0	-160.5	[21]
$[(C_6F_5)_2I][BF_4]$	-120.4	-141.4	-155.7		[22]

^a The signal of counteranion [BF₄]⁻is not given.

^b Unresolved signal.

^c In CCl₃F.

d In CD₂Cl₂.

acetonitrile at -40 °C resulted in the new species (**2a**) (Eq. (2)), which was characterized by not resolved ¹⁹F resonances at -119.9 (2F, F^{2,6}), -140.7 (1F, F⁴), -155.9 (m, 2F, F^{3,5}), -191.2 (1F, IF), and -147.6 (broad, $[BF_4]^-$) ppm (-40 °C). Both cations **1a** and **2a** showed deshielding of the carbon-bonded fluorine atoms with respect to the corresponding precursors C₆F₅HalF₂ (Table 1). This trend of shifts is in agreement with a stronger polarizing Hal atom in the cations (cf. similar trends for [(C₆F₅)₂Hal]⁺ cations, Table 1). However, the still remaining fluorine atom at bromine or iodine is strongly shielded by 30–35 ppm with respect to the fluorine atoms in the parent molecules C₆F₅HalF₂. Noteworthy, the unresolved C₆F₅ resonances and the broad deshielded [BF₄]⁻ resonance of **2a** are clear hints that in case of the iodo compound the cation and the anion are not solvent separated independent species.

$$\begin{array}{c} \mathsf{C}_{6}\mathsf{F}_{5}\mathsf{B}\mathsf{r}\mathsf{F}_{2} + \mathsf{B}\mathsf{F}_{3} \cdot \mathsf{NCCH}_{3} \overset{\mathsf{CD}_{2}\mathsf{Cl}_{2} + \mathsf{CD}_{3}\mathsf{CN}(5:1)}{\xrightarrow{-78^{\circ}\mathsf{C}}} \begin{bmatrix} \mathsf{C}_{6}\mathsf{F}_{5}\mathsf{B}\mathsf{r}\mathsf{F} \cdot (\mathsf{NCCH}_{3})n \end{bmatrix} [\mathsf{B}\mathsf{F}_{4}] \\ \textbf{1} \end{array} \tag{1}$$

$$C_{6}F_{5}IF_{2} + BF_{3} \cdot \text{NCCH}_{3} \xrightarrow[-40^{\circ}\text{C}]{} C_{6}F_{5}IF \cdot (\text{NCCH}_{3})_{n}][BF_{4}]$$
(2)

Warming of **1a** in CD₂Cl₂/CD₃CN (5:1) from -78 to 22 °C was accompanied by a brown coloration and caused the formation of bromopentafluorobenzene (**4**) and traces of 1-bromoheptafluorocyclohexa-1,4-diene (**5**). The solution of **2a** in MeCN was thermally more stable. Thus, a sweep of temperature from -40to 24 °C and back showed no changes of the ¹³C and ¹⁹F NMR signals of the C₆F₅ moiety, only the I–F and the [BF₄]⁻ signals underwent reversible broadening. Maintaining the MeCN solution of **2a** over hours at room temperature was accompanied by a change from colorless to brown and a slow decomposition. The ¹⁹F NMR spectra displayed the slow formation of iodopentafluorobenzene (**8**). Thus, the molar ratio **2a**:**8** was 66:34 after 17 h and 0:100 after 48 h (Eq. (3)).

Despite of the strong coordination property of MeCN (DN = 14.1), compound **2a** maintained its electrophilic character and formed pentafluorophenyl(mesityl)iodonium tetrafluoroborate (**14**) in the reaction with mesitylene (MeCN, $-40 \degree$ C) (Eq. (4)).

$$[C_{6}F_{5}IF \cdot (NCCH_{3})_{n}][BF_{4}] + 1, 3, 5-C_{6}H_{3}(CH_{3})_{3} \xrightarrow{MeCN}$$

$$2a$$

$$[(2,4,6-C_{6}H_{2}(CH_{3})_{3})(C_{6}F_{5})I][BF_{4}] + H_{solv}^{+} + [BF_{4}]^{-}$$

$$14$$

$$(4)$$

2.2. Reactions of $C_6F_5HalF_2$ (Hal = Br, I) with BF₃ in weakly coordinating solvents

Bubbling of BF₃ into the cold (-30 °C) suspension of C₆F₅BrF₂ in SO₂ClF caused the fast conversion into C₆F₅Br, 1-bromohepta-fluorocyclohexa-1,4-diene (**5**), 3-bromoheptafluorocyclohexa-1,4-diene (**6**), and 1-bromononafluorocyclohexene (**7**) (molar ratio 38:21:13:28) (¹⁹F NMR) (Eq. (5)). No ¹⁹F resonances for the cation [C₆F₅BrF]⁺ or related species were present.

Reactions of $C_6F_5IF_2$ with BF_3 in weakly coordinating solvents were performed in modified ways. Bubbling of BF_3 (excess) into a solution of **2** in PFP at -20 °C or stirring a CH_2CI_2 solution of **2** at -40 °C under the pressure of BF_3 (excess) resulted in a yellow precipitate (**2b**). The solution of the latter in cold (-40 °C) MeCN showed ¹⁹F signals of $C_6F_5IF_2$, $[C_6F_5IF\cdot(NCCH_3)_n][BF_4]$ (**2a**), and $[(C_6F_5)_2I][BF_4]$ (admixture). The nature of **2a** was proved by conversion into the iodonium salt **14** using mesitylene. Dissolution of **2b** in HF which contained a small amount of water led to $C_6F_5IF_2$ and $[BF_4]^-$ (2:1) (¹⁹F NMR). Based on these results, we conclude that the precipitate **2b** is the salt $[(C_6F_5IF)_2F][BF_4]$ with the dinuclear, fluoride-bridged iodonium constitution (Eqs. (6)–(8)). Our conclusion has an analogy in the $[Xe_2F_3]^+$ cation formed from $[XeF]^+$ and XeF₂.

$$\begin{array}{c} C_6F_5IF_2 + BF_3 \stackrel{PFP \ or \ CH_2Cl_2}{\longrightarrow} \langle [C_6F_5IF][BF_4] \rangle^{+C_6F_5IF_2} [(C_6F_5IF)_2F][BF_4] \\ \textbf{2} \quad \textbf{2b} \end{array} \tag{6}$$

 $[(C_6F_5IF)_2F][BF_4]$

$$+ n \operatorname{CH}_{3} \operatorname{CN} \underset{-40^{\circ} C}{\longrightarrow} [C_{6} F_{5} \operatorname{IF} \cdot (\operatorname{NCCH}_{3})_{n}] [BF_{4}] + C_{6} F_{5} \operatorname{IF}_{2}$$
(7)

$$[(C_6F_5IF)_2F][BF_4] + H_2O \xrightarrow{HF} 2C_6F_5IF_2 + [H_3O][BF_4]$$
(8)

2.3. Reactions of $C_6F_5HalF_2$ (Hal = Br, I) with anhydrous HF

Anhydrous HF combines the properties of a strong protic acid (super acidity), a Lewis acid of medium strength, and a polar solvent. In general, dissolution of salts MX in aHF resulted in "weakly solvated" cations $[M(FH)_m]^+$ and strongly solvated anions $[X(HF)_n]^-$. Strongly polar molecules can dissociate in aHF. Dissolution of BrF₃ in aHF results in the ionisation via fluoride abstraction [23,24] (Eq. (9)). This information suggested to examine the reaction of C₆F₅BrF₂ with aHF. Surprisingly, dissolution of **1** in aHF at -40 or -80 °C resulted in the fast conversion into products **4**, **5**, **6**, and **7** (molar ratio 17:73:4:6) which were also obtained in the reaction of **1** with BF₃ (Lewis acid of medium strength) in SO₂CIF (Eq. (10)).

$$BrF_3 + n HF \stackrel{aHF}{\rightleftharpoons} [BrF_2][F(HF)_n]$$
(9)

$$C_6F_5BrF_2 \xrightarrow[-80 \text{ or } -40^{\circ}C]{4} + 5 + 6 + 7 + \cdots$$
 (10)

In contrast, solutions of $C_6F_5IF_2$ in aHF showed no decomposition at 20–22 °C within days, The extreme broadening of the IF_2

signal (¹⁹F NMR) indicated a fast exchange of the hypervalently bonded fluorine atoms with that of the solvent [20].

2.4. Reaction of $C_6F_5IF_2$ with SbF_5 in SO_2CIF

To achieve the complete ionisation of $C_6F_5IF_2$ to $[C_6F_5IF]^+$, we employed the strong fluoride acceptor antimony pentafluoride. The reaction of **2** with SbF₅ (excess) in SO₂ClF at -20 °C resulted in a deep green solution. Its ¹⁹F NMR spectrum contained three resonances of equal intensity at -95.8, -111.8, and -135.8 ppm besides broad resonances of fluorine bonded to Sb^V at -90 and -110 ppm. The analysis of the ¹⁹F-¹⁹F couplings allowed to assign the triple of resonances to the 4-iodo-1,1,2,3,5,6-hexafluorobenzenium cation (**2c**). This re-investigation allowed to reject the previously proposed pentafluorophenyl(fluoro)iodonium constitution [C_6F_5IF]⁺ (**2d**) [17]. Characteristic data of this spectrum and for comparison the spectral data of the related 4-R-1,1,2,3,5,6-hexafluorobenzenium cations (R = F, Cl, OH) are presented in Table 2.

The spectrum of **2c** did not change in the temperature range from -50 to -10 °C, but at 20 °C the resonances of **2c** disappeared within 1–2 h and parallel signals of 1-iodononafluorocyclohexene (**9**) and of the $[(C_6F_5)_2I]^+$ cation appeared as major products. The fact that after the complete decomposition of **2c** the solution was still deep green, shows that this color did not derive from **2c**. The color is presumably attributed to the radical cation $[C_6F_5I]^{\bullet+}$ which possesses a very high extinction coefficient and is formed under the same conditions from traces of C_6F_5I and SbF_5 [27,28]. After decomposition of **2c** and dilution of the deep green solution with aHF and subsequent hydrolysis (0 °C), C_6F_5I (**8**), 1-iodononafluorocyclohexene (**9**), 1-iodo-3-oxopentafluorocyclohexa-1,4diene (**11**), 1-iodo-6-oxopentafluorocyclohexa-1,4-diene (**12**), and $[(C_6F_5)_2I][F(HF)_n]$ were isolated in ca. 72% overall yield (molar ratio 42:42:3:3:10) (¹⁹F NMR) (Scheme 1).

2.5. Reaction of $C_6F_5IF_4$ with fluoride acceptors

Pentafluorophenyliodine tetrafluoride (**3**) is poorly soluble in aHF. Its ¹⁹F NMR in aHF (0 °C) consists of resonances at -12.1(s, $\tau_{1/2} = 78$ Hz, IF₄), -127.9 (s, $\tau_{1/2} = 46$ Hz, 2F, F^{2.6}), -135.4 (tt, ³J(F⁴,F^{3.5}) = 19 Hz, ⁴J(F⁴,F^{2.6}) = 10 Hz, 1F, F⁴), -157.3 (m, 2F, F^{3.5}) and did not change within days at 20 °C. C₆F₅IF₄ resists to acidified aHF (aHF/NbF₅) and to BF₃ in 1,1,1,3,3-pentafluorobutane as well [14]. In contrast, the reaction between C₆F₅IF₄ and SbF₅ (excess) in SO₂CIF occurred fast at -35 °C and resulted in a yellow solution of pentafluorophenyl(trifluoro)iodonium

fluoroantimonate (3d) (Eq. (11)). The ¹⁹F NMR spectrum of the latter (-30 °C) consisted of two resonances of fluorine atoms bonded to iodine at δ 2.0 (td, ${}^{4}J(F_{2}I,F^{2,6}) = 16$ Hz, ${}^{2}J(F_{2}I,IF) = 51$ Hz, 2F, $IF_2(F)$) and at -43.2 (t, ${}^{2}J(FI,IF_2) = 51$ Hz, 1F, $IF_2(F)$) ppm, respectively, and of the three signals of the pentafluorophenyl group at δ –125.7 (m, 2F, F^{2,6}), –126.6 (tt, ³J(F⁴,F^{3,5}) = 18 Hz, ⁴J(F⁴,F^{2,6}) = 14 Hz, 1F, F⁴), and –151.0 (m, 2F, F^{3,5}) ppm. The broad signals of the counteranion $[Sb_nF_{5n+1}]^-$ were located at -88 and -110 ppm (cf. [18]). For comparison, the related compounds C₆F₅IF₄, IF₅, and [IF₄][SbF₆] were characterized by their ¹⁹F chemical shifts $\delta = 9.0$ (IF₄), -130.1 (F^{2,6}), -143.3 (F⁴), and -158.3 $(F^{3,5})$ ppm (C₆F₅IF₄ in CD₂Cl₂), 57.5 (1F_{ax}) and 10.1 (4F_{eq}) ppm (IF₅ in CH_2Cl_2) [29], 21.8 (s, $[IF_4]^+$), and -109 ppm (br s, $[SbF_6]^-$) $([IF_4][SbF_6] \text{ in } SO_2ClF(-10 ^{\circ}C)$. The solution of the closely related salt $[C_6H_5IF_3][SbF_6]$ in SO₂ (-60 °C) showed a single ¹⁹F resonance at -39.9 ppm (s, IF₄) and a broad Sb^V-F resonance at -111.4 ppm while the precursor C₆H₅IF₄ displayed the IF₄ signal at -25.6 ppm (in ether) [19].

$$\begin{array}{c}
\stackrel{\text{IF}_4}{(F)} + n \text{ SbF}_5 & \stackrel{\text{SO}_2\text{CIF}}{\xrightarrow{-30 \,^\circ\text{C}}} & \stackrel{\text{T}}{(F)} [\text{Sb}_n\text{F}_{5n+1}]^- & (11)\\
3 & 3d
\end{array}$$

Neither the chemical shifts nor the magnitudes of the J(F,F) couplings were changed when the solution of **3d** was kept at -20 °C (30 min) and at 0 °C (30 min). At 20 °C the initially yellow solution of **3d** became deep green (the origin of the deep green color was discussed above) within 20–30 min. The change of color was accompanied by 20–25% of decomposition. The observed main products were iodononafluorocyclohexene (**9**) and an equal amount of the 4-iodohexafluorobenzenium cation (**2c**) (¹⁹F NMR). After 2 h salt **3d** was consumed completely. Dilution of the still deep green solution with aHF, subsequent hydrolysis (0 °C), and extraction of the products with CH₂Cl₂ gave **8**, **9**, iodoundecafluorocyclohexane (**10**), and [(C₆F₅)₂I][F(HF)_n] (molar ratio 53:26:17:4)(overall yield ca. 78%) besides traces of unknown compounds (¹⁹F NMR) (Scheme 2).

3. Discussion

The results display a decreasing fluoride donor ability in the series $C_6F_5BrF_2 > C_6F_5IF_2 > C_6F_5IF_4$. The fate of the pentafluorophenyl(fluoro)halonium cation $[C_6F_5HalF]^+$ (or a structurally

Table 2

¹⁹ F NMR spectral dat	ta of 4-R-1,1,2,3,5,6-hexafluorobenze	nium fluoroantimonates ($(SO_2ClF, -40 °C)$).
----------------------------------	---------------------------------------	--------------------------	---------------------	----

R δ (F), ppm				Coupling constants	
	F ^{1,1}	F ^{2,6}	F ^{3,5}		
F [25] ^a Cl [25] I ^b OH [26] ^c	-131 -132 -135.8 -124.5	-55 -71 -95.8 -99.4	-142 -126 -111.8 -148.3		

^a $\delta = 34$ (d ³J(F⁴,F³) = 28 Hz, d ³J(F⁴,F⁵) = 28 Hz, d ⁴J(F⁴,F²) = 109 Hz, d ⁴J(F⁴,F⁶) = 109 Hz, 1F, F⁴) ppm.

^b This work.

^c In SO₂ at -50 °C.

Scheme 1.

[⊕]HalF HalF₂ Hal F (1) F Ð Hal Hal F F (2) Hal = Br. I Hal Æ R F (3) Hal = Br Scheme 3.

related species) is determined by the coordinating property of the solvent. When fluoride abstraction from $C_6F_5HalF_2$ occurred in acetonitrile, the cation $[C_6F_5HalF]^+$ is stabilized by base coordination $[C_6F_5HalF \cdot (NCCH_3)_n][BF_4]$ (Hal = Br, I), and the latter can be

characterized by multi-NMR spectroscopy. When the fluoride abstraction from C₆F₅HalF₂ by Lewis acids occurred in acidic (aHF) or weakly coordinating solvents, the intermediate $[C_6F_5HalF]^+$ is insufficiently stabilized by coordination and quickly rearranged to the (halo)hexafluorobenzenium cation which finally disproportionated and formed C₆F₅Hal and haloperfluorocycloalkenes. The driving force of rearrangement from the halonium cation to the benzenium cation (Scheme 3, route (1)) is the formation of the stronger C-F bond compared with the weaker Hal-F bond. Furthermore, the delocalization of the positive charge over five carbon atoms in the (halo)hexafluorobenzenium cation is favored over the charge localization in $[C_6F_5HalF]^+$. The formation of the final main reaction products, halopentafluorobenzene and haloperfluorocycloalkenes can be explained by further transformations of the polyfluorinated arenium cations [30]. When Hal = Br and $LA = BF_3$, the corresponding benzenium cation is a short-living species with high fluoride affinity and disproportionates to C₆F₅Br and $1-BrC_6F_9$ (Scheme 3, route (2)) and parallel it adds fluoride and converts into bromoheptafluorocyclohexadienes 5 and 6 (Scheme 3, route (3)). When Hal = I and LA = SbF_5 , the iodohexafluorobenzenium cation was the primary observed reaction intermediate which slowly formed C₆F₅I and 1-IC₆F₉ at 20 °C (Scheme 3, route (2)). The relative contribution of route (3), the addition of fluoride

Scheme 4.

to the benzenium cation 2c, was negligible because of the low fluoride donor ability of the fluoroantimonate counteranion and the excess of SbF₅ present in the solution.

The pentafluorophenyl(trifluoro)iodonium cation $[C_6F_5IF_3]^*$ (**3d**) is a more stable species than $[C_6F_5IF]^*$ and decomposed above 0 °C. We assume that the conversion of **3d** (Scheme 4, route (1)) proceeds via the polyfluorinated benzenium cation **3c** (Scheme 4, route (2)). In contrast to **2c**, the latter is a highly unfavored species because the strong electron-withdrawing group IF_2 is bonded to the positively charged atom C-4, and thereupon it quickly formed $C_6F_5IF_2$ and $1-IF_2C_6F_9$ (**13**). Further conversions of the intermediately formed $C_6F_5IF_2$ in the presence of SbF₅, which were discussed above, give **2c**, **8**, and **9**. The possible route from **13** to iodoundecafluorocyclohexane (**10**) is presented in Scheme 4 (route 3).

In all cases the reaction products which derived from $C_6F_5HalF_{n-1}$ (n = 3, 5) were halogen-containing perfluoroorganics. C_6F_6 , C_6F_8 , C_6F_{10} , and/or C_6F_{12} as products of C–Hal cleavage were *not* formed. This contrasted with reported qualitative observations of carbon–iodine bond cleavage in reactions of the perfluoroalkyl compounds CF_3IF_4 and CF_3IOF_2 with fluoride acceptors (BF_3 , AsF_5 , or SbF_5) [14,15]. To verify this important distinction to $C_6F_5HalF_{n-1}$ (n = 5) compounds we have treated $C_6F_{13}IF_4$ with AsF_5 in CCl_3F and obtained perfluorohexane in >90% yield (Eq. (12)). Organoiodine-containing products were not found.

$$C_6 F_{13} I F_4 \stackrel{AsF_5 \text{ in } CCl_3 F}{\longrightarrow} C_6 F_{14}$$
(12)

Likely, that an irreversible fluorodeiodination of the intermediate cation $[C_6F_{13}IF_3]^+$ occurred caused by the high partial positive charge at C-1, which bears two fluorine atoms and a perfluoroalkyl tail. The absence of a positive partial charge at C-1 in case of the cation $[C_6F_5IF_3]^+$ prevents a fluorodeiodination and favors alternative reaction channels (Scheme 4).

Finally, we need to comment the formation of the by-product $[(C_6F_5)_2I][SbF_6]$, in reactions of $C_6F_5IF_n$ (n = 3, 5) with SbF₅ in SO₂CIF. Probably, this salt is formed via an one electron oxidation of C_6F_5I by SbF₅ to the radical cation $[C_6F_5I]^{\bullet+}$ [27] which undergoes attacks on C_6F_5I (Eq. (13)).

$$C_{6}F_{5}I \stackrel{\text{SbF}_{5}}{\rightleftharpoons} [C_{6}F_{5}I] \stackrel{\bullet+C_{6}F_{5}I}{\longrightarrow} [(C_{6}F_{5})_{2}I]^{+} + I^{\bullet}(\rightarrow I_{2})$$
(13)

Evidently, a freshly prepared deep blue solution of C_6F_5I and SbF₅ (threefold excess) in SO₂ClF (-30 °C) did neither display ¹⁹F resonances of iodopentafluorobenzene nor of other fluoroorganic products, but warming to 20 °C caused a deep green coloration and after 1.5 h at 20 °C, signals of the cation $[(C_6F_5)_2I]^+$ were detected. After 14 h at 20 °C and dilution with aHF the hydrolysis of the deep green solution gave C_6F_5I and $[(C_6F_5)_2I][F(HF)_n]$ (74:26, molar). In an other experiment, the deep green solution of C₆F₅I in SbF₅/ SO₂ClF was kept at 20 °C over a period of 5 days. After hydrolysis, extraction and subsequent anion metathesis with Na[BF₄], the salt $[(C_6F_5)_2I][BF_4]$ was isolated in 75% yield. Noteworthy, that neither the spectra of solutions of decomposing $C_6F_5IF_2$ nor of $C_6F_5IF_4$ in SbF_5/SO_2CIF at 20 °C did display the signals of C_6F_5I , although after the final step of hydrolysis the latter was the major product. This phenomenon is explained by a fast electron exchange between C_6F_5I and the paramagnetic radical cation $[C_6F_5I]^{\bullet+}$ [27].

4. Experimental

The NMR spectra were recorded on Bruker AVANCE 300 (75.47 MHz, 13 C; 282.40 MHz, 19 F) and Bruker DRX 500 (125.75 MHz, 13 C; 470.59 MHz, 19 F) spectrometers. The chemical shifts are referenced to TMS (13 C), and CCl₃F (19 F, with C₆F₆ as secondary reference (-162.9 ppm)), respectively. The composition of the reaction mixtures and the yields of products were

determined by ¹⁹F NMR spectroscopy using the internal quantitative standards C_6F_6 or $C_6H_5CF_3$. Polyfluorocycloalkenes **5**, **6**, **7**, and **9** were identified by ¹⁹F NMR spectroscopy [31].

lodopentafluorobenzene (Bristol Organics), 1,1,1,3,3-pentafluoropropane (PFP) (Honeywell), and boron trifluoride (Messer Griesheim) were used as supplied. Antimony pentafluoride was twice distilled under an atmosphere of dry argon. Acetonitrile (Fluka) and dichloromethane (Fluka) were purified and dried as described in Ref. [32]. SO₂CIF was purified by shaking with mercury and subsequently distilled over SbF₅. Anhydrous HF was stored over CoF₃. C₆F₅BrF₂ [20], C₆F₅IF₂ [21], C₆F₅IF₄ [29], C₆F₁₃IF₄ [14], and BF₃·NCCH₃ [33] were prepared as described.

All manipulations were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) equipment under an atmosphere of dry argon.

4.1. Reaction of $C_6F_5BrF_2$ with BF_3 ·NCCH₃ in CD₃CN/CD₂Cl₂

A solution of BF₃·NCCH₃ (15 mg, 0.14 mmol) in CD₃CN (0.08 mL) was added to a cold (-78 °C) solution of C₆F₅BrF₂ (34 mg, 0.12 mmol) in CD₂Cl₂ (0.4 mL). The colorless solution (-82 °C) displayed ¹⁹F NMR resonances at -128.5 (m, 2F, F^{2.6}), -135.4 (ttd, ³J(F⁴,F^{3.5}) = 22 Hz, ⁴J(F⁴,F^{2.6}) = 9 Hz, ⁶J(F⁴, BrF) = 9 Hz, 1F F⁴), -154.7 (m, 2F, F^{3.5}), -86.5 (s, $\tau_{1/2}$ = 30 Hz, 1F, BrF) ppm, and the signal of [BF₄]⁻ (δ -151.4 ppm) besides traces of BF₃·NCCH₃ (δ -142.6 ppm) and C₆F₅Br. After warming to 20–22 °C, the brown solution showed signals of C₆F₅Br, **5**, and [BF₄]⁻ (1:0.07:1.4).

4.2. Reaction of $C_6F_5BrF_2$ with BF_3 in SO_2ClF

A suspension of $C_6F_5BrF_2$ (37 mg, 0.13 mmol) in SO₂ClF (0.5 mL) was cooled to -30 °C and BF₃ was bubbled over a period of 5 min. The ¹⁹F NMR spectrum of the colorless solution showed signals of **4**, **5**, 3-Br-1,4-C₆F₇ (**6**), and **7** (molar ratio 38:21:13:28).

4.3. Reaction of $C_6F_5BrF_2$ with aHF

Cold ($-45 \,^{\circ}$ C) aHF (0.2 mL) was added to cold ($-45 \,^{\circ}$ C) C₆F₅BrF₂ (**1**) (57 mg, 0.20 mmol). Immediately a white suspension was formed. The ¹⁹F NMR spectrum ($-40 \,^{\circ}$ C) confirmed the absence of **1** in the mother liquor. The reaction mixture was warmed to 20 $\,^{\circ}$ C, mixed with CH₂Cl₂ and aHF was evaporated. The ¹⁹F NMR spectrum of the dichloromethane solution contained resonances of **4**, **5**, 3-Br-1,4-C₆F₇ (**6**), and **7** (molar ratio 17:73:4:6). The same result was obtained when the reaction of **1** with aHF was performed at $-80 \,^{\circ}$ C.

4.4. Reaction of $C_6F_5IF_2$ with BF_3 ·NCCH₃ in CD₃CN

A cold (-40 °C) solution of BF₃·NCCH₃ (29 mg, 0.26 mmol) in CD₃CN (0.2 mL) was added to a cold (-40 °C) solution of C₆F₅IF₂ (66 mg, 0.20 mmol) in CD₃CN (0.3 mL). The colorless solution displayed unresolved ¹⁹F NMR resonances at -119.9 (2F), -140.7 (1F), -155.9 (2F), and -191.2 (1F) ppm besides the signal of [BF₄]⁻ (δ -147.6 ppm). The ¹³C{¹⁹F} NMR spectrum showed resonances at 147.7 (C-4), 146.5 (C-2,6), 138.7 (C-3,5), and 100.8 (C-1) ppm. No changes were detected after 4 h at -40 °C. When the solution was maintained at 20-22 °C for 17 h, it became brown and iodopenta-fluorobenzene appeared (molar ratio **2a:8** = 66:34) besides traces of IF₅ (¹⁹F NMR). The measurement after 48 h displayed signals of C₆F₅I and [BF₄]⁻ (1:1.4, molar) and IF₅ (trace).

4.5. Reaction of $C_6F_5IF_2$ with BF_3 in PFP

A. A solution of $C_6F_5IF_2$ (54 mg, 0.16 mmol) in PFP (0.7 mL) was cooled to -20 °C before BF₃ was bubbled over a period of 20 min to yield a yellow suspension. The ¹⁹F NMR spectrum of the mother liquor showed a negligible amount of pentafluorophenyl compounds. The precipitate was separated by decantation and dried in vacuum at -20 °C to give a yellow product (46 mg). Its solution in cold (-40 °C) MeCN (0.5 mL) presented ¹⁹F signals of C₆F₅IF₂, [C₆F₅IF·NCCH₃][BF₄], and [(C₆F₅)₂I][BF₄] (molar ratio 47:42:11). Addition of mesitylene (0.11 mmol) and maintaining at 20 °C overnight resulted in C₆F₅IF₂, [(2,4,6-C₆H₂(CH₃)₃)(C₆F₅)I][BF₄], C₆F₅I, and [(C₆F₅)₂I][BF₄] (molar ratio 58:25:12:5) (¹⁹F NMR).

B. Dissolution of the yellow precipitate (68 mg), which was obtained analogous from $C_6F_5IF_2$ (63 mg, 0.19 mmol) and BF_3 in PFP (0.5 mL), in cold (-20 °C) HF which contained water from exposure to air (0.5 mL) gave a colorless solution of $C_6F_5IF_2$ which contained [BF_4]⁻ (2:1, molar) (¹⁹F NMR).

4.6. Reaction of $C_6F_5IF_2$ with BF_3 in CH_2Cl_2

A FEP trap equipped with a magnetic stir bar was charged with $C_6F_5IF_2$ (165 mg, 0.50 mmol), CH_2CI_2 (0.4 mL) and deposited in a stainless steel cylinder which was attached to a stainless steel vacuum line. After evacuation at $-78 \ ^\circ C BF_3$ (ca. 2 mmol) was filled in. The reaction mixture was stirred at $-40 \ ^\circ C$ for 5 days. The excess of BF₃ was removed at $-78 \ ^\circ C$ in vacuum (0.1 hPa) and the mother liquor was separated from the yellow precipitate after centrifugation at $-78 \ ^\circ C$. The precipitate was washed with cold ($-40 \ ^\circ C$) CH_2CI_2 and dried in vacuum at $-40 \ ^\circ C$ yielding a yellow solid (27 mg). The ¹⁹F NMR spectrum of the latter in cold ($-40 \ ^\circ C$) MeCN showed resonances of $C_6F_5IF_2$, [C_6F_5IF ·NCCH₃][BF₄], and [(C_6F_5)₂I][BF₄] in a molar ratio of 26:53:21. The mother liquor contained $C_6F_5IF_2$ (¹⁹F NMR).

4.7. Reaction of $C_6F_5IF_2$ and BF_3 ·NCCH₃ with mesitylene

A solution of $[C_6F_5IF \cdot NCCH_3][BF_4]$ (0.28 mmol) obtained from equimolar amounts of BF₃·NCCH₃ and $C_6F_5IF_2$ in MeCN (0.4 mL) at -40 °C was treated with a cold (-40 °C) solution of mesitylene (35 mg, 0.29 mmol) in CD₃CN (0.1 mL). After 1 h at -40 °C, volatiles were removed in vacuum, the residue was washed with CH₂Cl₂ (3× 0.2 mL) at 20 °C and dried in vacuum. Salt [(2,4,6- $C_6H_2(CH_3)_3)(C_6F_5)I][BF_4]$ was obtained in ca. 90% yield.

 $[(2,4,6-C_6H_2(CH_3)_3)(C_6F_5)I][BF_4](14)$. ¹H NMR (CD₃CN): $\delta = 7.26$ (m, 2H, H^{3,5}), 2.65 (s, 6H, 2CH₃ ortho), 2.35 (s, 3H, CH₃ para). ¹⁹F NMR (CD₃CN): $\delta = -120.9$ (m, 2F, F^{2,6}), -142.9(tt, ${}^{3}J(F^{4},F^{3,5}) = 20 \text{ Hz}, {}^{4}J(F^{4},F^{2,6}) = 6 \text{ Hz}, 1F, F^{4}), -155.8 \text{ (m, 2F, } F^{3,5}),$ -149.2 (s, [BF₄]⁻). ¹³C NMR (CD₃CN): $\delta = 147.8$ (dm, ${}^{1}J(C,F) = 251 \text{ Hz}, C-2,6; C_{6}F_{5}, 146.6 (dtt, {}^{1}J(C,F) = 260 \text{ Hz},$ ${}^{3}J(C,F) = 5$ Hz, ${}^{2}J(C,F) = 13$ Hz, $C_{6}F_{5}$), C-4; 138.9 (dm. $^{1}J(C,F) = 259 \text{ Hz}, C-3,5; C_{6}F_{5}), 84.6 (td, {}^{2}J(C,F) = 26 \text{ Hz}, {}^{4}J(C,F) = 5 \text{ Hz},$ C-1; C₆F₅), 146.8 (q, ${}^{2}J$ (C,H) = 6 Hz, C-2',6'; C₆H₂), 144.1 (m, C-4'; C_6H_2), 131.6 (dm, ¹*J*(C,H) = 165 Hz, C-3', 5'; C_6H_2), 121.9 (m, C-1'; C_6H_2), 27.0 (qm, ¹J(C,H) = 129 Hz, ortho-CH₃), 21.0 (qtm, ${}^{1}J(C,H) = 128 \text{ Hz}, {}^{3}J(C,H) = 4 \text{ Hz}, para-CH_{3}).$ **14** decomposed in a closed capillary at 161 °C. The products were dissolved in cold MeCN and gave C₆F₅I, C₆H₂F(CH₃)₃, and BF₃·NCMe in the molar ratio 1:1.1:1.2 (19F NMR).

4.8. Reaction of $C_6F_5IF_2$ with SbF_5 in SO_2CIF

A solution of SbF₅ (144 mg, 0.66 mmol) in SO₂CIF (0.55 mL) was cooled to -20 °C and solid C₆F₅IF₂ (**2**) (84 mg, 0.25 mmol) was added in a one portion to form a deep green solution. The ¹⁹F NMR at -20 °C revealed the formation of [4-I-1,1,2,3,5,6-C₆F₆]⁺ (**2c**) (see Table 2), When the solution was kept at 20 °C for 1.5 h **2c** disappeared in the ¹⁹F NMR and **9** and [(C₆F₅)₂I]⁺ appeared. Subsequently the reaction mixture was cooled to -15 °C, diluted with aHF (0.1 mL) and poured onto ice which was treated with

liquid nitrogen. The products were extracted with CH_2Cl_2 (1 mL). The ¹⁹F NMR spectrum of the extract showed signals of C_6F_5I (**8**), [($C_6F_5)_2I$][F(HF)_n], 1-iodononafluorocyclohexene (**9**), 1-iodo-3-oxopentafluorocyclohexa-1,4-diene (**11**), and 1-iodo-6-oxopentafluorocyclohexa-1,4-diene (**12**) in the molar ratio 42:10:42:3:3 (overall yield ca. 72%) besides signals of secondary amounts of unknown compounds.

1-Iodo-3-oxopentafluorocyclohexa-1,4-diene (**11**). ¹⁹F NMR (CH₂Cl₂): $\delta = -98.5$ (ddd, ⁴*J*(F⁶,F²) = 10 Hz, ⁴*J*(F⁶,F⁴) = 10 Hz, ³*J*(F⁶,F⁵) = 25 Hz, 2F, F^{6,6}), -103.3 (ddt, ⁴*J*(F²,F⁴) = 3.5 Hz, ⁵*J*(F²,F⁵) = 4 Hz, ⁴*J*(F²,F⁶) = 10 Hz, 1F, F²), -135.6 (ddt, ⁵*J*(F⁵,F²) = 3.5 Hz, ³*J*(F⁵,F⁴) = 5 Hz, ³*J*(F⁵,F⁶) = 25 Hz, 1F, F⁵), -152.9 (ddt, ³*J*(F⁴,F⁵) = 4 Hz, ⁴*J*(F⁴,F²) = 4 Hz, ⁴*J*(F⁴,F⁶) = 10 Hz, 1F, F⁴).

1-Iodo-6-oxopentafluorocyclohexa-1,4-diene (**12**). ¹⁹F NMR (CH₂Cl₂): $\delta = -90.9$ (ddt, ⁴J(F²,F⁴) = 3 Hz, ⁵J(F²,F⁵) = 3 Hz, ³J(F²,F³) = 26 Hz, 1F, F²), -115.2 (ddd, ⁴J(F³,F⁵) = 10 Hz, ³J(F³,F⁴) = 21 Hz, ³J(F³,F²) = 26 Hz, 2F, F^{3.3}), -145.9 (ddt, ⁵J(F⁵,F²) = 3 Hz, ³J(F⁵,F⁴) = 4 Hz, ⁴J(F⁵,F³) = 10 Hz, 1F, F⁵), -147.2 (ddt, ³J(F⁴,F⁵) = 4 Hz, ⁴J(F⁴,F²) = 3 Hz, ³J(F⁴,F³) = 21 Hz, 1F, F⁴).

4.9. Reaction of $C_6F_5IF_4$ with SbF_5 in SO_2CIF

 $C_6F_5IF_4$ (68 mg, 0.18 mmol) was added to the cold $(-35\ ^\circ\text{C})$ solution of SbF_5 (158 mg, 0.73 mmol) in SO_2CIF (0.55 mL) in one portion to form a yellow solution. NMR measurements at $\leq 0\ ^\circ\text{C}$ revealed the formation of **3d**. Following the solution was kept at 20 $^\circ\text{C}$ and became deep green within 20–30 min. After 2 h the green solution was cooled to $-20\ ^\circ\text{C}$, diluted with aHF (0.1 mL) and poured onto ice which was treated with liquid nitrogen. Extraction with CH_2Cl_2 (1 mL) gave a solution of C_6F_5I, [(C_6F_5)_2I][F(HF)_n], 1-iodononafluorocyclohexene (**9**), and iodoundecafluorocyclohexane (**10**) (molar ratio 53:4:26:17) (overall yield ca. 78%) besides traces of unknown non-aromatic compounds (^{19}F NMR).

Iodoundecafluorocyclohexane (**10**). ¹⁹F NMR (CH₂Cl₂), δ : -104.8 (d, ²*J*(F^{2a},F^{2e}) = 292 Hz, 2F, F^{2a,6a}), -125.0 (d, ²*J*(F^{2a},F^{2a}) = 292 Hz, 2F, F^{2e,6e}), -121.8 (d, ²*J*(F^{3a},F^{3e}) = 289 Hz, 2F, F^{3a,5a}), -135.6 (d, ²*J*(F^{3e},F^{3a}) = 285 Hz, 2F, F^{3e},F^{5e}), -122.8 (d, ²*J*(F^{4a},F^{4e}) = 285 Hz, 1F, F^{4a}), -141.8 (d, ²*J*(F^{4e},F^{4a}) = 285 Hz, 1F, F^{4e}), -144.6 (m, 1F, F¹) ppm (cf. [34]).

4.10. Reaction of C_6F_5I with SbF_5 in SO_2ClF

- A. C_6F_5I (38 mg, 0.13 mmol) was added in one portion to the cold solution (-50 °C) of SbF₅ (96 mg, 0.44 mmol) in SO₂ClF (0.55 mL) to give a deep blue solution. The ¹⁹F NMR spectrum (-30 °C) showed only resonances at 99.8 ppm (SO₂ClF) and broad resonances at -86 and -123 ppm (Sb^V-F). Warming to 20 °C caused the formation of a deep green solution. After 1.5 h at 20 °C, the ¹⁹F NMR signals of the cation [(C_6F_5)₂I]⁺ (δ = -117.7 ($F^{2.6}$), -133.8 (F^4), and -151.2 ($F^{3.5}$) ppm) were observed in addition to the above-mentioned resonances. The solution was kept at 20 °C overnight, cooled to -10 °C, diluted with aHF (0.2 mL) and poured onto ice which was treated with liquid nitrogen. After melting of the ice, the products were extracted with CH₂Cl₂ (1 mL). The extract contained C_6F_5 I and [(C_6F_5)₂I][F(HF)_n] (74:26) (¹⁹F NMR).
- B. When the deep green solution of C_6F_5I (187 mg, 0.63 mmol) and SbF_5 (419 mg, 1.93 mmol) in SO_2CIF (0.5 mL) was kept at 22 °C over a period of 5 days a dark precipitate formed. The reaction mixture was cooled to 0 °C and poured onto ice treated with liquid nitrogen. After melting of the ice, the brown suspension was extracted with pentane (1 mL). The rose extract showed signals of C_6F_5I (0.24 mmol) (¹⁹F NMR). The aqueous phase was saturated with Na[BF₄] and [(C_6F_5)₂I][BF₄] (84 mg, 0.15 mmol) was filtered off.

4.11. Reaction of $C_6F_{13}IF_4$ with AsF_5 in CCl_3F

The solution of $C_6F_{13}IF_4(0.15 \text{ mmol})$ in $CCl_3F(0.5 \text{ mL})$ was cooled to -60 °C and AsF₅ (ca. 1 mmol) was condensed. Immediately a dark precipitate formed. After 10 min the temperature was raised to -40 °C and the excess of AsF₅ was removed under a stream of dry argon. The ^{19}F NMR spectrum (-40 °C) showed signals of C_6F_{14} at -81.4, -123.5, and -127.0 ppm (yield 90%) besides resonances of CCl_3F and residual AsF₅ (-59 ppm, broad).

4.12. Solution of [IF₄][SbF₆] in SO₂ClF

The salt $[IF_4][SbF_6][35](43 \text{ mg}, 0.1 \text{ mmol})$ was cooled to $-15 \degree C$ and SO₂ClF (0.5 mL) was condensed to yield a colorless solution. The ¹⁹F NMR spectrum contained resonances at 21.8 (s $[IF_A]^+$) and -109 ppm (br, s, [SbF₆]⁻) and did not change in the temperature range from -40 to -10 °C.

5. Conclusions

The relative fluoride donor ability decreased in order $C_6F_5BrF_2 > C_6F_5IF_2 > C_6F_5IF_4$. In contrast to the stability of di(organyl)iodonium and di(organyl)bromonium salts, salts with the cations $[C_6F_5HalF]^+$, generated by fluorine abstraction from $C_6F_5HalF_2$, are highly unstable. They were detected as solvates $[C_6F_5HalF \cdot (NCCH_3)_n][BF_4]$ in basic acetonitrile. In aHF (Hal = Br) or in weakly coordinating solvents, the pentafluorophenyl(fluoro)halonium cations [C₆F₅HalF]⁺ converted spontaneously via halohexafluorobenzenium cations into C₆F₅Hal and 1-X-nonafluorocyclohexene (and bromoheptafluorocyclohexa-1,4-dienes when Hal = Br). Aryl(trifluoro)iodonium fluoroantimonates $[ArIF_3][Sb_nF_{5n+1}]$ (Ar = C₆H₅ [19], C₆F₅ ([18] and present work)) are more stable salts. Decomposition of [C₆F₅IF₃][SbF₆] in SO₂ClF at 20 °C resulted in C₆F₅I, 1-I-cyclo-C₆F₉, and cyclo-C₆F₁₁I.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- [1] (a) A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH, Weinheim, 1992;
 - (b) P.J. Stang, V.V. Zhdankin, Chem. Rev. 96 (1996) 1123-1178;
 - (c) A. Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press, London, 1997.
- [2] G.A. Olah, Halonium Ions, Wiley, New York, 1975.
- G.F. Koser, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Functional Groups, Wiley, Chichester, 1983, p. 1264 (Chapter 25).
- [4] H.-J. Frohn, M. Hirschberg, A. Wenda, V.V. Bardin, J. Fluorine Chem. 129 (2008) 459-473.

- [5] N.Sh. Pirkuliev, V.K. Brel, N.S. Zefirov, Usp. Khim 69 (2000) 118-133;
- N.Sh. Pirkuliev, V.K. Brel, N.S. Zefirov, Russ. Chem. Rev. 69 (2000) 105-120. [6] T. Wirth, G.F. Koser (Eds.), Topics in Current Chemistry, vol. 224, Springer, Berlin, Heidelberg, 2002.
- V.V. Zhdankin, P.J. Stang, Chem. Rev. 102 (2002) 2523-2584.
- [8] M. Ochiai, Y. Nishi, S. Goto, H.-J. Frohn, Angew. Chem. Int. Ed. 44 (2005) 406-409.
- M. Ochiai, Y. Nishi, S. Goto, M. Shiro, H.-J. Frohn, J. Am. Chem. Soc. 125 (2003) [9] 15304-15305.
- [10] H.-J. Frohn, M. Giesen, D. Welting, G. Henkel, Eur. J. Solid State Inorg. Chem. 33 (1996) 841-853.
- [11] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 89 (1998) 59-63.
- [12] L.M. Yagupolskii, A.A. Mironova, I.I. Maletina, Zh. Org. Khim. 16 (1980) 232-233:
- L.M. Yagupolskii, A.A. Mironova, I.I. Maletina, Chem. Abstr. 93 (1980) 26005. [13] A.A. Mironova, I.I. Maletina, V.V. Orda, L.M. Yagupolskii, Zh. Org. Khim. 19 (1983) 1213-1217:
- A.A. Mironova, I.I. Maletina, V.V. Orda, L.M. Yagupolskii, J. Org. Chem. USSR (Eng. Transl.) 19 (1983) 1082-1085.
- [14] H.-J. Frohn, V.V. Bardin, J. Fluorine Chem. 126 (2005) 1036-1043.
- [15] G. Oates, J.M. Winfield, J. Chem. Soc. Dalton Trans. (1974) 119-124.
- [16] D. Naumann, W. Habel, Z. Anorg. Allgem. Chem. 482 (1981) 139-142.
- [17] V.V. Bardin, G.G. Furin, G.G. Yakobson, Zh. Org. Khim. 16 (1980) 1498-1501; V.V. Bardin, G.G. Furin, G.G. Yakobson, J. Org. Chem. USSR (Eng. Transl.) 16 (1980) 1288-1291.
- [18] V.V. Bardin, G.G. Furin, G.G. Yakobson, Zh. Org. Khim. 16 (1980) 1256-1263; V.V. Bardin, G.G. Furin, G.G. Yakobson, J. Org. Chem. USSR (Eng. Transl.) 16 (1980) 1086-1092
- [19] S. Hover, K. Seppelt, J. Fluorine Chem, 125 (2004) 989–996.
- [20] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 24 (1984) 9–15.
 [21] F. Bailly, P. Barthen, W. Breuer, H.-J. Frohn, M. Giesen, J. Helber, G. Henkel, A. Priwitzer, Z. Anorg. Allg. Chem. 626 (2000) 1406-1413.
- F. Bailly, P. Barthen, H.-J. Frohn, M. Köckerling, Z. Anorg. Allg. Chem. 626 (2000) 2419-2427
- [23] T. Surles, H.H. Hyman, L.A. Quaterman, A.I. Popov, Inorg. Chem. 10 (1971) 611-613.
- [24] H. Meinert, U. Gross, J. Fluorine Chem. 2 (1972/1973) 381-386.
- [25] V.D. Shteingarts, Yu.V. Pozdnyakovich, Zh. Org. Khim. 7 (1971) 734-744; V.D. Shteingarts, Yu.V. Pozdnyakovich, Chem. Abstr. 75 (1971) 48006.
- N.G. Kostina, V.D. Shteingarts, Zh. Org. Khim. 10 (1974) 1705-1712; [26]
- N.G. Kostina, V.D. Shteingarts, Chem. Abstr. 81 (1974) 151153. [27] N.M. Bazhin, Yu.V. Pozdnyakovich, V.D. Shteingarts, G.G. Yakobson, Izv. Acad. Nauk SSSR. Ser. Khim. (1969) 2300-2302; N.M. Bazhin, Yu.V. Pozdnyakovich, V.D. Shteingarts, G.G. Yakobson, Chem. Abstr.
- 72 (1970) 42447. [28] N.E. Akhmetova, N.M. Bazhin, Yu.V. Pozdnyakovich, V.D. Shteingarts, L.N. Shchegoleva, Theor. Exp. Khim. 10 (1974) 613-623;
- N.E. Akhmetova, N.M. Bazhin, Yu.V. Pozdnyakovich, V.D. Shteingarts, L.N. Shchegoleva, Chem. Abstr. 82 (1975) 42643.
- [29] H.-J. Frohn, S. Görg, G. Henkel, M. Läge, Z. Anorg. Allg. Chem. 621 (1995) 1251-1256
- [30] Chemistry of polyfluorinated arenium cations was reviewed in (a) V.D. Shteingarts, Russ, Chem. Rev. 50 (1981) 735-748: (b) V.D. Shteingarts, L.S. Kobrina, I.I. Bilkis, V.F. Starichenko, Chemistry of Polyfluoroarenes: Mechanism of Reactions and Intermediates, Nauka Publ., Novosibirsk. 1991 (in Russian): (c) V.D. Shteingarts, in: G.A. Olah, R.D. Chambers, G.K.S. Prakash (Eds.), Synthetic Fluorine Chemistry, Wiley-Interscience, New York, 1992, pp. 259-286; (d) V.D. Shteingarts, in: G.A. Olah, G.K.S. Prakash (Eds.), Carbocation Chemistry, Wiley-Interscience, New Jersey, 2004, pp. 159-212.
- [31] V.V. Bardin, J. Fluorine Chem. 89 (1998) 195-211.
- [32] H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 2539-2550.
- A.W. Laubengayer, D.S. Sears, J. Am. Chem. Soc. 67 (1945) 164-167. [33]
- [34] G.V.D. Tiers, J. Fluorine Chem. 98 (1999) 89-95.
- [35] A.A. Woolf, J. Chem. Soc. (1950) 3678-3681.